Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis.

نویسندگان

  • Michael I Carr
  • Justine E Roderick
  • Hugh S Gannon
  • Michelle A Kelliher
  • Stephen N Jones
چکیده

ATM phosphorylation of Mdm2-S394 is required for robust p53 stabilization and activation in DNA-damaged cells. We have now utilized Mdm2(S394A) knockin mice to determine that phosphorylation of Mdm2-S394 regulates p53 activity and the DNA damage response in lymphatic tissues in vivo by modulating Mdm2 stability. Mdm2-S394 phosphorylation delays lymphomagenesis in Eμ-myc transgenic mice, and preventing Mdm2-S394 phosphorylation obviates the need for p53 mutation in Myc-driven tumorigenesis. However, irradiated Mdm2(S394A) mice also have increased hematopoietic stem and progenitor cell functions, and we observed decreased lymphomagenesis in sub-lethally irradiated Mdm2(S394A) mice. These findings document contrasting effects of ATM-Mdm2 signaling on p53 tumor suppression and reveal that destabilizing Mdm2 by promoting its phosphorylation by ATM would be effective in treating oncogene-induced malignancies, while inhibiting Mdm2-S394 phosphorylation during radiation exposure or chemotherapy would ameliorate bone marrow failure and prevent the development of secondary hematological malignancies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice.

The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosp...

متن کامل

Decreased Mdm2 Expression Inhibits Tumor Development and Extends Survival Independent of Arf and Dependent on p53

Inactivation of the Arf-Mdm2-p53 tumor suppressor pathway is a necessary event for tumorigenesis. Arf controls Mdm2, which in turn regulates p53, but Arf and Mdm2 also have p53-independent functions that affect tumor development. Moreover, inhibition of oncogene-induced tumorigenesis relies on Arf and p53, but the requirements of Arf and p53 in tumor development initiated in the absence of over...

متن کامل

Phosphorylation of serine 18 regulates distinct p53 functions in mice.

The p53 protein acts a tumor suppressor by inducing cell cycle arrest and apoptosis in response to DNA damage or oncogene activation. Recently, it has been proposed that phosphorylation of serine 15 in human p53 by ATM (mutated in ataxia telangiectasia) kinase induces p53 activity by interfering with the Mdm2-p53 complex formation and inhibiting Mdm2-mediated destabilization of p53. Serine 18 i...

متن کامل

Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway.

The oncoprotein MDM2, a major ubiquitin E3 ligase of tumor suppressor p53, has been suggested as a novel target for human cancer therapy based on its p53-dependent and p53-independent activities. We have identified curcumin, which has previously been shown to have anticancer activity, as an inhibitor of MDM2 expression. Curcumin down-regulates MDM2, independent of p53. In a human prostate cance...

متن کامل

Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance.

The Mdm2 oncoprotein regulates abundance and activity of the p53 tumor suppressor protein. For efficient degradation of p53, Mdm2 needs to be phosphorylated at several contiguous residues within the central conserved domain. We show that glycogen synthase kinase 3 (GSK-3) phosphorylated the Mdm2 protein in vitro and in vivo in the central domain. Inhibition of GSK-3 rescued p53 from degradation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 16 10  شماره 

صفحات  -

تاریخ انتشار 2016